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SUMMARY

The minimum wave-drag problem with auxiliary conditions is solved
for axial flow about bodies of revolution consisting of two symmetrical
oglval sections Jolned by a circular cylinder. The auxiliary conditions
are that the total length, the length of the cylinder, the frontal area,
and the volume are held constant. The results are related to similar
results known for bodies of revolution without a cylindricel midsection,
and it 1s found that the addition of small amounts of center section has
little effect on the drag. The maximum thickness ratio leading to the
least total of wave and friction drag is Investigated briefly.

INTRODUCTION

The formula for the determination of the wave drag of a slender
body of reyolution in a supersonic free stream parallel to the axis of
the body was first given by von Karman and Moore (reference 1). In a
later work (reference 2), von Karman reformulated the problem and gave
the form of the body of prescribed length and meximum cross section
haying a minimm waye drag. The bodies treated in both the above papers
consisted of ogives at the upstream end of cylinders extending to
infinity downstream. Somewhat later, Lighthill (reference 3) gave the
solution to the problem of minimm drag with the auxiliary conditions of
prescribed length and meximum thickness for & body consisting of two
symmetrical oglves placed back to back. A paper by Haack (reference k)
glves a complete summary of all previous solutions, as well as some new
solutlons, for both symmetrical bodies and bodies of the type discussed
in references 1 and 2. In reference 5, Busemann hag attacked the problem
of minimum drag of bodles of revolution by exploiting its analogy to the
problem of wing—trailing—vortex systems of minimm energy. Sears (refer—
ence 6) discusses the body comsisting of two ogives placed back to back
but, in the case ¥vhere length and maximum cross section are prescribed,
he does not 1limit the analysis to the case of fore—and—-aft symmetry.
However, the results show that the least drag does occur for symmetrical

bodies.
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The present report offers an extenslon of the results ocutlined
above by taking into consideration bodies consigting of two symmetrical
ogives joined by a cylindricael center section.! (See fig. 1.) Since the
stern section is polnted, the question of base drag does not arise. If
it were desired to consider bodles with finlte area at the sterm, such
ag boattalled bodies, again without taking into account the base
pressure, the method used in this report would be applicable, provided
the meridian section of the body has zero slope at the end where the
boattall occurs. The analysis then becomes conslderably more compli-—
cated than that of the case treated here,

The introduction of the center section brings a new geometrical
parameter into the problem, namely, the length of that center section.
The minimum drag problem can be formulated as an isoperimetric problem,
since the suxiliary conditions are expressible In Integral form. It 1is
solved under the conditions that frontal area (or meximm thickmess),
volume, length of cylinder, and total length are held comnstant. This
rather restrictive set of conditions 1s then relexed to include cases 1n
which two of the geometric parameters are fixed while the other ane 1s
free to vary. In this wvay, three distinct minimm problems conmnected
with the type of body considered here can be investigeted systematically,

Finally, in the appendix, the frictional drag of a body of revolu—
tion is teken into account in an approximate marmmer to determine the
thickness ratio of a body having the least value of combined wave and
frictional drag,

LIST OF IMPORTANT SYMBOIS

1
B e (E—k' 2K)
B(o,k) g5 [B(0,k) — K'2F(o,k)]
Cp* wave drag coefficient, based on the area 12 Grag
iy v 232
900
Cpg wave drag coefficlent, based on frontal area of body
_drag
1
50050

iThe present work generalizes particular cases of bodies with cylindrical
midsections considered by Mex. A. Heaslet and Harvard Lomax in the
forthecoming series on High-Speed Aerodynamics and Jet Propulsion,
Princeton Unlversity Press.
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Cpy

D(o,k)

E(o,k)

_F(o,k)

wave drag coefficient, based on 2/3 power of volume of body
1 2/8
5Polo ¥

L (x=

%[F(U:k) - E(o,k) ]

complete elliptic integral of second kind, medulus k

incomplete elliptic integral of second kind with argument
o and modulus k ‘ -

incomplete elliptic integral of first kind with argument
¢ and modulus k

2
modulus of elliptic integrals |k = /1 —(%)

complementary modulus <k.' = J1 k2 = %)

complete elliptic imtegral of first kind, modwlus k

total length of body of revolution

length of cylindrical midsection of body of revolution

maximm radius of body of revolution :

local radius of body of revolution

vave drag divided by free—stream dynsmic pressure ﬁr—:rsz
' 5P0Y0 /.

frontal area of body of revolution (n‘oé)‘-
So )
12

local cross—sectlonal area of body of revolution [nr2(x)]

maximm thickness ratio of body (reciprocal of fineness ratio)

To
1
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t local thickness ratio of body
v total volume of body
*
Vo velocity of the free stream
b < coordinate along axis of body
Z(o,k) Jacobian Zeta function of argument o and modulus k
[2(50) - 2o,) - E #(o
Aol Lagrange multipliers (equation (Lb))
x
5 1
. 2_y2
o argument of elliptic integrals |o = 1 =2 _1 /1 —£2
1212 k
Po free-stream density
ANATYSTIS

Nomenclature and Boundary Conditlons

An exsmple of the type of body to be considered in thls report 1s
shown in figure 1. Also In that figure 1s shown some of the notation to
be used. If S(x) denotes the cross-sectional area of the body at any
point, then

S(x) = nra(x) (1)

vwhere r(x) 1is the local radius of the body. It willl be stipulated
that the body is symmetrical about x=0, that it closes at each end, and
that the oglval sections falr into the cylindrical section with vanish-
ing slope. Analytically, these conditions become (see fig. 1)

r(%1) = 0
r(fL) = ro
r'(:t[-.) =0

where a prime denotes differentiation with respect to x. In texrms of
the area function S(x), these conditions become (since S'=2xrr?)
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s(£1) =0
8(3L) = 8, (2a)
8'(xL) =0

Where Sp = nro2 1is the cross—sectional area of the cylinder. On the
cylinder the conditions on S(x) are ‘

8(x) = éo
s'(x) =0 ) ~1L<x<L (2b)
s (x) =0

The cross—sectlional area must always be positive or zeroj;

s(x) =0 . (2¢)

Finally, the restriction is mmde that the maximum cross section occurs
at the cylindrical portion., Thus,

§'(x) 20; —1<x<-1L

(24)
8'(x) €03 L<x<1

The Variational Problem

On the basis of the Work of reference 1 or 3, the wave drag of a
body such as is illustrated In figure 1 is glven by

R=Ozeg _ 1 fs‘(x)dx.flwdxl
ZpoVow  °T Uy )

X=X
gro'o N

In order to errive at this approximation, it 1is assumed that the
body is slemder (to <<1), and that both S(xs and S'(x) are continu-
ous and equal to zero at the ends of the body.

Because of the fore—and-aft symmetry of the body, the above expres—
slon for waye drag can be modified into one involving integration over

either the nose or stern section alone, Thus, for integration over the
stern (x>0)

1

1 1 'e
Lewa [ B o (3)

_ 2
R=3

o e e e e et e
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The variational problem to be golved is of the lsoperimetric type,
since the drag is to be minimized under the auxiliary conditions of
constant length, frontal area, and volime, The body shapes determined
a8 solutions to this problem will be referred to as optimmm bodies. With
the amxiliary conditions Just mentioned, the quaentity to be minimized can
be written .

T=R+A V+pu; 8¢ (4a)

¥here V 1s the total yolume of the body, and Ay and u, &are wmdeter—
mined constants, the so-called Iagrange multipliers. The yolume V can
be expressed as

1 ' 1
V=2f S(x)dx+2LS°=-—2f x g'(x) dx
L L
and the fromtal area ag
86 = — fs'(x)dx
SJp
Equation (4a) cam now be written
> 1 lﬁ,,x
T== gt (x) ——J—l)-dx1+)‘.x+p dx (¥v)

¥Yhere A and up bhave replaced -—-nh; and —g— K1, Trespectiyely.

In performing a variation of the quantity T, Just defined, only
so—called weak variations will be allowed. This ‘means that the cross—
section distribution S(x) is deformed slightly, in such a way that the
derivatives of the deformation function are of the same order of small-
ness as the deformation function itself. (See reference 7, pP. 7.) The
variation can be performed in any of a variety of ways, and the resulting
necessary condition for a minimm (va.niahing of the first variatiom)
leads to the equation

1 .
2xs' Y (x3) s
\[L *—x-z':x?-—dx1+lx+p-0 (5)

The function S(x) obtained by solution of this integral equation, and
two subsequent integrations, is the distribution of cross—sectional ares
which characterizes. the required optimm bedy.
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In order to show that equation (5) is the condition for a minimm
instead of s maximm, the second variation can be examined. It is found
that the second variation is proportional to the drag of the variation
of the profile acting alone and, hence, 1s positive, by analogy to the
result found by Mimk in his work on minimm drag of wings (reference 8).

Determination of the Cross Section S(x)
Equation (5) can be written

25" (x2)
/LJ?;_;%“’XI:' (+%) ®)

It is only necessary to solve thls equation for x>0 because of the
symmetry of the body., Make the transformations

in equation (6); 1t becomes

T i

Equation (6a) can be written in the form

g(T)dar
w(t) = f t-T

which is the familiar airfoil equation. The general solution to the
glrfoll equation is knowyn, being

b Y
g(t) = = f g(m)ar - fbw(f) S;T)(T_a)d

w2/ (50) (50) | | a a

The quantlty appearing in the solutiom as

fb g(r)dr .

a

is of &the nature of an arbitrary constant, and is to be evaluated from
conditions of the problem. In the present case, the constant is
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?'2
fz = 8] —ﬁ = 2[8' (1) = §'(L)] =0
L

by condition (22) and the condition S'(1) = 0 imposed on equation (3).
The solution to equation (6) can be written (in terms of x)

, <x+ J—) J(13=%1) ($2-17)
81 (x) = 2 ./(12—12) (x2-12) f X2ty

dt,
(7)

The integrations of equation (7) can be performed, yielding

o T2\ 2
S (x) = _ A _x(12412-px2) +-2-§ [x (x2-L=)K~1=(K~-E) + KZ(cr,k)]
ex [J(1B=x2)(x2-12) ¥ 1./ (1%~=x2) (x2-1L2)
(8)

where

K, E complete elliptic integrals of first and second kind,

respectively, modulus k

Z(o,k) Jacobian Zeta function of argument o and modulus Xk

[Z(o’,k) = B(g,%) - 2 F(cr,k):l

F(o,k) E(o,k) incomplete elliptic integrals of first and second kinds,
respectively, of argument o and modulus k

k modulus of elliptic integrals [k = / ila, )2]
o argument of elliptic infegrals < = / 7’2'?:)

Next, the first derivative, S'(x), can be determined by

g (x) = f S'1(xy) dxi
L

It is found that

\s' (x) = - -21; (x+h % %) ,j(za-xz) (x2-12) + 2—,; K x Z(g,k) . (9)
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Finally, S(x) 1s given by

1
S(x) = -~ f 8'(xy) dxy = —%}t [ZLZF(U,k) - (1241 7_,., +
p.<

~ K

W (1P—=x2) (x2~17) ] + -ﬂ% {Kxa Z(o,k) +

[ 1%E E(o0,k) — LXK F(cr,k):’ -K % V (12=x2) (x2-1.2) } (10)

This function, S(x), giyes the cross—sectional ares distribution of an
optimm body of revolution of the type shown in figure 1, when the
lengths, frontal area, and volume asre prescribed, Since the solution
appears in terms of the undetermined comstants A and u, it is neces—
sary to find these constants in terms of the prescribed quantities.
This can be done by determining the frontal area and volume:

B0 = 8(L) = %}t [(1312) E —éLEK 1+ 52- (12E312K2) (11)

1
2L 80 + 2 f S(x)dx
L

-«
|

(12)

N

L3 (1212)2 4 KL [ (12412)E —212 K ]
16 3%

Thus, equations (11) and (12) serve to determine the constants A and
p in terms of the prescribed quantities L, 1, V, and Sq.

The remalning quantity to be evaluated is the drag. A combination
of equations (3) and (6) ylelds

1
R=;<%V+uso> (13)

The solution obtained as equation (10) must now be examined to
ingure that it satisfies the boundery conditions. The conditions of
equations (2a) have already been imposed in the analysis, as have th
conditions of equations (2b). The other boundary conditioms, (2¢) & -
(26.), are more complex, however, and require some care in spplicatic.
First, notice that if the conditions S(L) = Sg, S(1) = 0 are met, and
8'(x) 1is negative in the interval L <x <1, then certainly Séx)
cannot become negative in that interval. Thus if the condition (2d) on
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the derivative of g(x) is satisfied, then condition (2c¢) is implicitly
met, The remsining boundary condition can now be stated as

s'(x) = - & (» 1_;&11‘2) S12x2) (x21.2) + 2 xaz (0,%) €0, L x <1

Analysis of this inequality at the end points shows that it implies the
following two conditions on A and pu:

M+ 2D >0 (1ka)
4B
Al + - |J.2 0 (:U-l-b)
where
D= %@
B < E-K¥K
k2

It is interesting to note the meaning of the two equalities con-~
tained in expressions (1la) and (14b) in terms of the body geometry.
Equation (8) can be written in the form

ST1(x) =é—ﬁx-i[<m +%§u@- 61 + @L);{/Lﬁ;é]lr %KZ(U,k)

vhich shows that S''(x) is infinite at I unless the equality of
expression (1lha) holds, and is infinite at 7 unless the equality of
(1¥b) holds. Since

(15)

Sr1(x) = 21 (r'® + rr'')

the sipgularity at I indicates that =r'' 1s infinite there, whille a
singularity at 1 indicates that r' is infinite at 1. On the other
hand, if S'*'(x) 1s zero at L, then =r'! is zero, showing that the
oglval section fairs into the cylinder with vanishing second derivative
as well as vanishing first derivative. Similarly, the vanishing of
S''(x) at 1 gives a zero value of r' at the tip, so that the body is
cusped. Since this only occurs when the equality

XZ+%(B.|J,=O

holds, it is seen that, in general, the optimum bodies have vertical
tangents at the tips.

It 1s convenient to have the formulas pertinent to the solution for
optimm bodies in dimensionless terms. Introducing the followirng nota-
tion
So

= X3 So¥* = 2 *=,_v__ '=L.
3 33 o 757 v k T

8’

o~
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and

5(x)

12

where t 1s the local thickmess ratio (M), the equations can be
put into the following form 21

t2(¢) -6”2{1:2 [B(c,k) -k% D (a,k):l -g\/(1-§2)(§2_k12)}

= xt2

= [sexz(c,k) +E B(o,k) - k®KF(0,k) - Kt ,[1-£3)( sa—k'a):l(m)

vhere ¢ varles from k' to 1, a8 x <varles from L to 1.

_ = AL 2
So¥= 1te2 = = k2(B-k'®D) + 2 £ (E2-x'%") (17)
where t5 18 the maximum thickness ratio of the body,
v* = AL k% + L x2(B-k'ZD) (18)
16 3n
x _ _ drag 1 /Al
" =7 v212~=t 7 VX + u So¥ (19)
5 Po'o

Equations (17) and (18) can be solved for A and p, resulting in

M= BhBZ [3(E2-kK2) V* - nk® (B-k'"D) So*] (208)
B 1';3‘% [3nk*S * - 8 k2(B - k'°D) V¥] (20Db)

where
A = 9(E2x*®x2) - 8 (B - k'®D)2

By use of the results of equations (20), the inequalities (lll-) can be
expressed In terms of S %, V*, and k'; they become

%< 80" < 21
¥ o ‘ife (21)

where
.= 2k2D (B-k'*D) -3 (EZ - Kk 12K2)
¥1= ’-fff 32D - 4 (B - k'3D]
Io= 3 (E2 - k'®k®) -2k2 B(B - k'p)
¥p= B2 [k (B - X'°D) -3K7B]
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*
Figure 2 shows the region defined by the inequalities (21) with %%r
plotted versus k'. The upper curve represents

vE ¥
and the lower,

S5 2

v ¥,

The shaded r-gion between these curves, which will be called the admis-
sible regi-u, defines the limits within which the parameters k' and
So*/V* r 5t lie in order that the solution for the optimum body satlsfy
the requirement given in expression (2d). That is, for a prescribed
‘value of k', say, the prescribed values of Sg¥ and V* must be such
that the ratio So¥/V*¥ falls in the shaded region of figure 2.

Finally, by using equations (20), the formula for the drag coeffi-
cient Cp* (equation (19)) can be put in terms of the geametric para-
meters k', So¥, V¥;

3(80%)3 2ee (Y5 ,
Cp* = "'sti"%l—— [2#(E2-k 2g2 @) -16xk3(B-k 2D)§§— + 3n2k4] (22)

DISCUSSION OF SOLUTION

From the results obtained in the previous section, one can find the
characteristics of the body of revolution, of the type shown in figure 1,
having minimm wave drag when the quantities total length (21), length
of cylinder (2L), frontal area (So) and volume (V) are fixed., Although
the semitotal length 1 no longer appears in the formulas (equa-
tions (16), (1T), (18), and (22)), having been absorbed into the dimen-
sionless quantities Cp*, k', Sg¥, V¥, it must be remembered that total
length of the bodies is fixed. It was also found that when all four
geometric quantities, 1, L, Sq, V, were prescribed, certain limitations
upon their magnitude must be observed in order to meet boundary condi-
tions set forth in expressions (2c) and (2d). These limitaticus are
most simply expressed in terms of the parameters k! and Sp /V¥, where
k! is the ratio of the length of the cylindrical section to total length,
and So*/V* is the ratio of the volume of the cylinder of radius r,
and length 1 to the volume of the body. The permissib.e range of
values for k' and So¥*/V* is given in expressions (21), and is shown

graphically in figure 2.
Using equation (22), the variation of the drag coefficient CD*

with the variables k' and So*/V¥* can be found. The calculations
were made for a value o” Sg* of n/100, corresponding to a maximum




NACA TN 2535 13

thickness ratio of 1/10. In the accompanying sketch, a three-dimensional
view of the variation is shown. The two curves 1n the base plane are
Just those of figure 2, defining

the admissible region for k' and
So*/V*, For a given value of the
length retio k', the drag coeffi-
cient Cp* varies parabolically

with S.*/V¥*; the minimum occur~

ring be%ween the extreme admis-

sible values of So*/V¥*. With
increasing k', Cp* Increases

steadily and the rate of incresse ,
approaches infinity as k' K
approaches unity. A quantitative

1dea of the variation is afforded

by figure 3, where the drag coef-
ficient Cp#* is plotted against

So*/V¥ for several values of the length ratio k'. The curve shown
for k'=0 agrees with results of reference 4. The increase in drag
coefficient with k' is seen to be slow for small values of k', indica-
ting +that the greater available volume resulting from the cylindrical
center sectlon may warrant acceptance of the slight increase in drag.

In order to obtain a more detailed view of the variation of drag
with the geometric parameters, the variational problem that has been
solved can be relnterpreted. The existence of the limits on the quanti-
ties So¥/V* and k' (expressions (21)) suggests that two of the trio
k', So¥, V* might be fixed, while the third is left free to vary

within the ascertainable limits determined by the two prescribed values.
The total length, 21, of the bodles is also fixed, although it appears
only implicitly. There are three such combinations possible:
1. .1, k', Sg* fixed; V* free
2. 1, V¥, k' fixed; S,* free
3. 1, So¥*, V¥ fixed; k' free
These three problems can be stated in physical terms as follows:
1. Total length, cylinder length, and f?ontal area fixed; volume free
2. Total length, volume, and cylinder length fixed; frontal area free
3. Total length, frontal area, and volume fixed; cylinder length free

These three problems will be considered in order.
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The Three Subcases

Case 1: Total length, cylinder length, and frontal area fixed;
volume free.- In terms of the dimensionless parameters, this case applies
to bodies having k! and Sg*¥ fixed. The admissible range of the volume
parameter V¥* can be determined either from expressions (21) or from
figure 2. For each value of V¥ in the range so found, an optimum
body exists, so that a family of optimum bodies 1s now determined. The
varlation of drag for members of this family is readily found by use of
equation (22), or an estimate may be obtained from figure 3. Now some
one of this family of bodies must give rise to the least drag, and it
is clear that this member is determined by the condition A equals
zero.2 The formulas for thickness distribution and drag for the best
optimum body in this family become (from equations (16) and (19))

t2(¢) = m{ﬁalcz(c,k) +|:E E(o,k) -k! ZKE’(U,k)] xtA1- ga)(ge_k,a)}
g ¥ 2 (23)
Co* = Ty (o)

E2 k*2k=

The volume parameter for the optimm body is given by
B*k'ag
v = 213&2- B2 k122 So* (25)

It is convenient to have drag coefficients based upon the frontal
area and upon the volume (to the 2/3 power) of the body, rather than
upon the area 12. These are » respectively,
n2 ¢ 2
Cpy = T—HBE__ - 0

S Vo212 ES-K'TRE
on = drag 9 E2kr3%” (V¥)4/3
Dy %povoe(v*)efsza T k4ZB ~k12D)2

If the length L of the center section is allowed to vanish, k!
approaches zero, and the last formulas become

CDS LJO = 1'(2 toe

2The condition that A be zero corresponds to solving the original
isoperimetric problem of minimum drag with fixed length and frontal
area, the volume being unspecified. This problem will lead to the
best body sought for the case 1 under consideration. This result
could also be obtained from equation (22) by the ordinary method of
differentiation. Simllar remarks apply to the case when i is taken
to be zero.
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These results agree with those of references 4 and 6. The drag coeffi-
cients for the body with a center section can be expressed in terms of
the above quantities, so that the effect of adding a center section is
readlly seen:

‘p
S 1 4
n2te2 P32 (26)
and
Coy _ E -kk3
E(v¥4/3" kt(B-k'?D)? (27?

Figure 4 shows a plot of the quantity CDS/n2t02 against k',

This figure shows that the drag coefficient based on frontal area rises
slowly when the ratio of length of cylindrical portion to total length
is small (the drag coefficient having risen 10 percent when the
cylinder makes up about 10 percent of the body), but goes up very
rapidly for bodies on which the cylindrical section makes up more than
about 50 percent of the body.

There is another limiting case of some interest for the body with
k! and Sp¥* prescribed, besides the one in which k! vanishes. That is
the case in which the cylindrical section becomes infinitely long while
the nose and stern sections have a prescribed length. Thus, both 1
and I become infinite while (1-L) remains fixed. The drag resulting
from such a configuration is given by

R .drag _ 8850
-1 n(2-L)2
.2_ povoa ( )
vhich agrees with a result of reference 2 for an ogive of given caliber
at the end of a semi~infinite cylinder,

The shape of the best body of a family can be computed by means of
equation (23). Since the thickness %t 1s given by the ratio of diame~
ter to total length, the ratio of the local radius r +to the maximum
radius r, is

<—1-’—>={§2KZL@ + [FB(o,k) = k2 KF(0,k)] - K&/(1-£3) (ga-k'2>}l/2
T 1

o E2 -~ k12 g2

_ (28)

where £

M
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bution for seversl values of k!
are shown in figure 5. The

/ 3}\ Plots of this thickness distri-
1.2 \/ accompanying sketch shows a plot

) =0 of equation (25) in relation to
the extreme admissible values of
So*/V* versus k'. The upper
curve corresponds to the equality
least drag in expression (14b), and repre-

10 /- ) sents the relation for a body
given ¥ and .S‘f with cusped tips, while the low~

3 \/ est curve corresponds to the
equality in (1l4a), and gives
\ zero curvature where the end

A k sections join to the cylinder.

.8 Therefore, the best bodies of
\ \ the present families never have
L [ cusped tips, nor zero curvature
\ where the oglval sections and
s center sectlon Join,.

.6 / rfL)=0— &\\ Case 2: Total length,
\ volume, and .cylinder length
N fixed; frontal area free.~ In
this case, which can be analyzed
4 & ":,l: L/? g 10 in the sa::;e way as the one Just
preceding, the volume and lengthe
ratio parameters V* and k!
serve to determine a range of
permissible values of the frontal area parameter Sp¥*. This range is
again obtainable either from expressions (21) , or from figure 2, Fig-
ure (3), showing variation of drag with k' and So¥*/V*, can once more
be consulted for a general view of the behavior of the drag as the
parameters change,

The optimm body in a given family 1s now determined by the vanishe=
ing of p (see footnote 2), and the equatlons for thickness distribution
and drag become

t2(t) = {ka B(o,k) -k2D(a,k)] - /(1-§2)<§aw2>} (29)
k2(B-k’2D)
3t toaV¥
Op* = e 30)
D k2(B-k'3D) (
The relation between Sy* and V¥ for the best member of a family is
8 Bk'2D yx

3 T k2 (31)
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Again the drag coefficient can be based elther upon (volume)z/3 or
upon frontal area, the former being the more useful in this case since
volume 1s fixed. The drag coefficient based on (volume)2/8 is

Cp,, = % (V*)"'/a[gl;:l (32)

and that based on the frontal area is

9 1
Cpg = § ™%t0® [ma} (33)

In both cases, the function of k' 1in square brackets reduces to unlty
as k' vanishes, and the resulting expressions for bodies without
center sections agree with results of references 4 and 6. Figure 6
shows a plot of the quantity

% 1

8 k4
E(v*) 4/3

as a function of the length ratic k'. The behavior is qualitatively
the seme as found In case 1 for the drag coefficient based on frontal
area, but the increase of drag coefficient with k! is somewhat slower
in the present case.

In the present instance, where V* and k' are given, the thickness
distribution function is, from equation (29),

2 - 12 - 2 2 12
<Ib\ _ [x2[B(o,x) -k llzgcé)i'aé)/(lg ) (62 )lg (34)
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Plots of this thickness distribu-
tion are shown in figure 7, where
shapes for several values of k!
— are given., The sketch shows in

rt1) =0 this case that again the best body
of a family is one having neither
cusped nose and stern sections nor
zera curvature at the Junctions of
end and center sections; the best
body at k! = O has zero curvature
at the juncture of the ogival sec-
tions,

.3

~ /east drag
, given V'and k' |

\( . Case 3: Total length, frontal
\:

area, and volume fixed; cylinder
length free.~ In this case the

\ dimensionless parameters Sg¥* and

V¥ are fixed, while the length
ratio k' is free to vary. It

f \\\ is the most difficult case to
rrL)=0 \ [/ analyze because the parameter X!

6 N \‘\ appears implicitly in the func-
\\ tions involved. By differentia-

ting equation (22) with respect

to k', holding Sg* and V¥ fixed,

o 2 .46"-‘ L.fl -8 o it i1s found that the derivative
dCp*/Ok' is never negative, and

vanishes for a value of k' such

that

where ®; and V¥; are defined after expressions (21). In terms of the

admissible range of the length ratio k! for fixed values of the frontal-
ares and volume parameters S and V¥, this equation means that the

member of the family for whicﬁ kt ha.s the least admissible value

(fig. 2) is the one with least wave drag in that family. It can be seen
from figure 2, however, that if the ratio of the given parameters S *
is greater than 8/31 = 0.849, the least admissible value of the leng%h
ratio is always k' equal to zero.

In the cases where the ratio S *%/V*¥ 1s less then 8/3n, the drag
coefficient of the best body of a family is given by

3(So¥)?
Cp* = g [2A(E2—k'2K2) <§Y-O’i*> ~16xk?(B-k'°D) §Y':'¥ + 31r2k4:l

(35)
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where the value of k! to be used is the one which makes

&1 _8g° (36)
¥, v

This value of k' is best found from figure 2. It is not so useful in
this case to refer the drag coefficients to those for a body without
center section, for the value of the length ratio k' is no longer arbi-
trary and hence cannot be made to vanish at will.

For the cases In which the ratio of frontal-area parameter to
volume parameter is greater than 8/3w, the best body of a family is the
one for which the length of the cylindrical section is zero, as has been
noted., The drag coefficlent Cp* 1s then given by the formula

Op* = 2 (24 V*@ - 161 V* Sg* + 32 So*2) (37)

Since the length of the cylindrical center section is zero and no longer
enters as a parameter, 1t is convenient to relntroduce the semitotal
length 1 into the formulas. The wave drag, divided by free-stream
dynamic pressure, 1s

R = = (2h V2 - 161 1:VSg + 312125.2) (38)

14

and this agrees with the result of reference 4. The length 1 must be
between the limits :

J<

<1<

A =
&<

(39)

0

8
31 So
Since for a given cross-sectional area, the body of least wave drag will
be the one with the longest admissible length, it 1s clear that for the
present case, where Sp and V are prescribed, and no center section
exlsts, the best body is the one for which

-k ¥
L =T8s (ko)

as stated in reference 4. Bodies, the length of which is greater than

the value of equation (40), do not fall within the admissible region and
hence violate condition (2¢).

Shapes of the bodies for the present case are shown in figure 8.
The body for which S */V*¥ equals 4/x and k' = O is shown at the top of
the figure. This body 1s the best one of all those without a midsection,
having the relation between 1, Sp, and V given in equation (40). The

other body shapes shown are each the best body for the prescribed value

e e A . ———T— A i S T = R P
e e+ ¢ e = e
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of the parameter ratio So¥/V¥*, the value of k' being chosen from the
lower curve of figure 2. The equations for the shapes are

for 0.5 é?%:‘< §l
) - L {8k2(B-k'2D)[§. (B2xr2®) L - kz(B-k'aD)] A
Yo, k2/A T So* o.

2

3(E2-k121{2)[ ak_(M_m_ ﬂ‘](r()) }1/2 (41a)

vhere (r/ro), and (r/ro) are defined in equations (28) and (34),
respectively,

8 < Sg* < L
for §; T yx W

@) -beEHE e

In order to obtain the best body of the family described by equa-
tion (41s), the value of k' to be used can be found from equation (36),
or from the lower curve of figure 2. For the family described by equa-
tion (41b), the best member is the one for which

So* _ 4
T* T 0x

SUMMARY OF RESULTS

For convenlence, the important drag formulas of the preceding
analysis have been gathered together in the present section. The equa-
tions are numbered just as they appear in the text. The formulas are
given in terms of the dimensionless parameters k', Sg¥, and V¥, which
are related to the total length 21, the cylinder length 2L, the frontal
area S,, and the volume V by means of the equations

= L
l

So
Sd* = 72
v = L

o~
@
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Case 1: Total Length, Cylinder ILength, and
Frontal Area Fixed; Volume Free

The cylinder length and frontal area determine the dimensionless
parameters k' and So¥, while the volume 1s represented by the para-
meter V¥. The prescribed values of k' and So¥ determine an admissible
range of values of V¥ (see fig. 2), and the optimm body of this family
has the following characteristics:

V¥ = E&—a K12 SO*

3 Ea_k 1 (25)

Drag coefficient based on frontal ares,

C
D5 __1
2t 2  RBx12g2

(See rig. b) (26)
Drag coefficient based on (volume)2/8

oy mRae?e

9 4(n_ 31212 2
2 (y%)4/®  k*(B-x'2D) (27

Case 2: Total ILength, Volume, and Cylinder
Length Fixed; Frontal Area Free

The given volume and cylinder length determine the dimensionless
parameters V* apd k', and these values lead to a range of admissible
values for Sy*, (See fig. 2.) The best body of the family so deter-
mined has the following characteristics:

2
so* = 2 B Dy (31)
Drag coefficient based on (volume)e/s,
C
5 v — = kl,,, (See fig. 6) (32)
= (V)%

Drag coefficient based on frontal area,

Cp
5 = L1 (33)

— e M e e rmmm s A mer e e e e A A s g it e m ey - ————— e e — -
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Case 3: Total Length, Frontal Area, and Volume
Flxed; Cylinder Iength Free

The frontal area and volume determine Sg¥ and V¥, and these in
turn determine a range of admissible values of k!.(See fig. 2.) If
the quotient Sg*/V* is less than 8/3x =0.849, the best body is one

with a value of k' such that

where @; and V; are defined in expressions (21). This value of k!
is most easily found from figure 2. The drag coefficient for the opti-

mem body 1is then

Cp* = Eiz [2h(E2-k'2K2) (V*)z-l&rka(B-k'.ED)V* So¥ + 3:@1:,,,(80*)’-] (35)

In case the value of the ratio Sg%/V* 1is such that

8 <8<k
3n T VF X

the best body is one with no center section (k' = 0), and the drag
coefficient is

op* = 3 [2l+(v*)2-16n V* So* + 33(30*)2] (37)
or, in terms of the remaining three parameters 1, Sy, V,
R = g%?.%rgé,: 32 (@4 V31611V 8, + 3521 25,2) (38)
Oo'0

Ames Aerongutlical Ieboratory
Natlional Advisory Committee for Aeronasutics
Moffett Field, Calif, August 2L, 1951
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APPENDIX

A MINTMUM DRAG PROBLEM WHICH INCLUDES AN APPROXTMATION

TO THE EFFECT OF SKIN FRICTION

It is possible to include the effects of skin friction 1n the
analysis of minimum drag of bodies of revolution, provided the surface
area of the bodies is known. If it be assumed that this surface area
1s expressible in the form

Area = 2L(2nro) + 2(1-L) (2rro) (a1)

where the second term represents the area of the ogival end sections, and
7 1s an unspecified constant, then the drag due to skin friction is

. S
%po \'ata .
vwhere Cpp i1s the friction-drag coefficient, to i1s the maximum thick-

ness ratio, and k' 1s again the ratio of length of cylindrical section
to total length.

= by [1 + (& -1) k'] Cpp to (42)

Consider now a body of revolution with prescribed length ratio k!
and frontal-area parameter Sg¥. The wave-drag coefficient based on
frontal area for the best such body 1s, from equation (26) of the text,

c x2 'tog
Ds Eﬁ_ k12K
The total-drag coefficlent CDT’ based on frontal area, is then
72 toa 1{-7 T -
Cp._ = + 14(5— 1IC
Dp ~ g2 x22 T to {: 7 >k:l De (A3)

Now the total drag can be minimized with respect to maximum thickness
ratio +to; there results for the optimm, to',

o' = &= {16 7 Cp, (B2-k'"K®) [l +<—’75 - ) k*:l }1/3 (Ak)

It remains to asgign values to the constants 7 and CDf‘

Inspection of figure 5 shows that the bodies under consideration do
not differ greatly in. shape from prolate ellipsoids of revolution. Thus,
for the present purposes, it will be sufficient to use the approximation
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corresponding to the surface area of a prolate ellipsoid the minor axis
of which is small compared to its major axis. Eguation (Ah) for the

optimum thickness ratio now becomes
1/3

to! = %;-{}o Cpe (E2-"%%) [1 + (En-1) k']}- (45)

If the cylindrical section is allowed to vanish, k' <vanishes, and the
last equation becomes

to! | =L A0 ¢
©1=0  2x D (46)

The optimum thickness 'ratio for bodies with a center section can there~-
fore be expressed as

to! = (k') to! Lio (47)

w0 o[ (1)

A graph of c(k') versus k' is shown in the sketch.
g

I,O\ . The remaining constant is the
skin~friction drag coefficient
CDF' ‘For the purpose of 1llustra-

8 "' tion, an average value of 0.0025,
\ *  corresponding to a turbulent

Where

boundary layer at a Mach number of

¥ about 1.7 and a Reynolds number of
ctk’) 13 million, was taken from the

) data of reference 9. The optimum
49 thickness ratio for a body of

revolution with no center section,
and with prescribed length, con-
2 sidering both wave and friction
drag, is then found to be (from
equation (46))

0o

0 2 4 6 .8 10 R
k'sL/l to' | ¥y

By means of the sketch of the variation of c(k'), the results can be
extended to bodies of revolution with a center section. Consider a body
the center section of which mskes up 10 percent of its total length.

From the sketch and the above value of to' | , it is seen that the
L=0
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optimm value of thickness ratio remains about 1/1%, again showing that
the effect of the added cylindrical portion upon the drag is small for
small values of the length ratio k!'. The optimm thickness ratio
decreases to l/19 for a body the center part of which is 50 percent of
the total length. - ’
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Figure 2— Region of admissible values for the paramefers k' and Sy V¥
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Figure 4.— Variation of drag coefficient based on frontal
area with length of cylindrical section, given length —
satio and frontal—area parameier.
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Figure 6.— Variation of drag coefficient based on vo/ume‘e/’
with length of cylindrical section, given length—
rotio and volume parameter.
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